
2025-04-16 self hosting dreamwidth with docker

objectively insane title i know

yeah we're doing this. or in other words, i already did this 6 months ago. so by we i
mean i'm helping YOU learn how to self host dreamwidth with docker because you can

do it bare metal but it didn't work for me when i tried so i just got crazier[1] and did
docker compose instead.

let's get this out of the way: dreamwidth is forked from livejournal and built in perl and a
custom markup language and the latter happened because a better one didn't exist yet.
this stuff's all older than me. the dreamwidth developers do fantastic work stripping out
the old BML — Better Markup Language, he really called it that — and replacing it with

semi-readable[2] efficient perl code. i want to start all of this by mentioning how kind and
helpful and considerate the DW devs all are, how they entertained and voluntarily
helped me with my stupid shitpost idea of self hosting DW on a dell optiplex IN
DOCKER. step by step, every time i got stuck on a part of perl or DW or anything that
they could help with, they helped. and i promised this documentation to them as soon as
i finished my initial deploy of the site, after 25 tossed mySQL databases and tons of
failed edited dockerfiles, and it's come so late that i'm embarrassed. i hope this is
sufficient enough.

baseline stuff

this guide will assume you know docker quite well. if you don't you should really
familiarize yourself because we're not doing the light shit like pulling from docker hub
and then running pre-made stuff. no we're building slightly edited dockerfiles and
running slapdash scripts into containers like fucking animals. this is a terribly
disorganized experience and if you don't know the docker basics it will be absolutely
miserable.

this guide will NOT assume that you know perl because frankly i don't either. perl scares
the shit out of me. i struggle with the constraints and abstractions of fucking ruby on
rails. you think i can work with perl? all i know is that the dollar sign is a variable and the
at sign is an array and a friend told me that. this language is terrifying and ungodly. i
want to learn it.

this guide will assume that you know basic git. i did not know basic git when i did this,

minus git clone, and i only recently started version controlling my DW deploy[1-1]. git
knowledge will help you a lot here. please version control your site.

https://www.love4eva.net/
af://h1-0
af://h1-1
af://h2-2

and lastly, this guide will assume you know the extreme basics of SQL. by that i mean
you know SHOW TABLES; and SELECT * FROM sitekeywords; and shit. we're not
doing some SQL rocket science here and i'll mostly guide you through stuff but if i don't
explain those parts it's because i barely know what the hell it's doing and i copied it from
stack overflow and it worked.

important resources

table of contents

1. dreamwidth wiki: oh my god please save PDFs of the pages of this that i link to or
something because you will want copies of this. absolutely invaluable stuff. the
production notes page offhandedly mentioned interacting with ddlockd over telnet
and it changed my life. save that and the scratch installation page at the very least.

2. dreamwidth github repo: make a github account if you don't have one and search
that repo to your heart's content. if you need to debug something you at least have
the power of God and the 13 year old code comments in perl or BML files on your
side.

3. my sourcehut repo for stuff i did that's referenced in this guide: read ahead to learn
about the files in this!

1. getting started
2. the compose file

1. dockerfiles
1. db
2. lock
3. worker
4. web

2. database
3. config files

1. config.pl
2. config-local.pl
3. config-private

4. more database stuff but it's not too bad
5. FIRST RUN OF THE SITE YEAHHHHHHH
6. never mind we have to reverse proxy now
7. configuring workers
8. if using local disk modules
9. customization of the site

1. default site scheme
2. custom index controller

af://h2-3
http://wiki.dwscoalition.org/wiki/index.php
http://wiki.dwscoalition.org/wiki/index.php/Production_Notes
http://wiki.dwscoalition.org/wiki/index.php/Dreamwidth_Scratch_Installation
https://github.com/dreamwidth/dreamwidth/
https://git.sr.ht/~chasinglightning/love4eva-ref
af://h1-4

getting started

the compose file

alright so here is by far the most embarrassing part of all of this: sharing my compose
file. everyone point and laugh at this absolute nonsense:

3. custom text

10. running your site
11. admin stuff on site
12. CONCLUSION
13. references

services:

 web:

 container_name: web

 build:

 context: /home/dw/dw/etc/docker/web

 dockerfile: Dockerfile

 ports:

 - "3237:80"

 volumes:

 - /home/dw/dw/etc/docker/web/files/config-

private.pl:/dw/etc/config-private.pl

 - /home/dw/dw/etc/docker/web/files/config-

local.pl:/dw/etc/config-local.pl

 - /home/dw/dw/etc/docker/web/files/config.pl:/dw/etc/config.pl

 - /home/dw/dw/etc/texttool.pl:/dw/etc/texttool.pl

 - /home/dw/dw/etc/build-static.sh:/dw/etc/build-static.sh

 - /home/dw/dw/cgi-bin/DW/TaskQueue.pm:/dw/cgi-

bin/DW/TaskQueue.pm

 - /home/dw/dw/var/taskqueue:/dw/var/taskqueue:rw

 - /home/dw/dw/cgi-bin/DW/TaskQueue/LocalDisk.pm:/dw/cgi-

bin/DW/TaskQueue/LocalDisk.pm

 - /home/dw/dw/blobimages:/dw/var/blobimages:rw

 - /home/dw/dw/bin/worker-manager:/dw/bin/worker-manager

 -

/home/dw/dw/etc/docker/worker/files/workers.conf:/dw/etc/workers.conf

 -

/home/dw/dw/htdocs/stc/gradation/gradation.css:/dw/htdocs/stc/gradatio

n/gradation.css:rw

 - /home/dw/dw/htdocs/scss/skins/gradation/_gradation-

base.scss:/dw/htdocs/scss/skins/gradation/_gradation-base.scss:rw

 - /home/dw/dw/cgi-bin/DW/SiteScheme.pm:/dw/cgi-

bin/DW/SiteScheme.pm:rw

 - /home/dw/dw/cgi-bin/DW/SiteScheme.pm:/dw/ext/dw-nonfree/cgi-

af://h1-5
af://h2-6

bin/DW/Hooks/SiteScheme.pm:rw

 -

/home/dw/dw/htdocs/img/profile_icons:/dw/htdocs/img/profile_icons

 - /home/dw/dw/bin/upgrading/en.dat:/dw/bin/upgrading/en.dat:rw

 - /home/dw/dw/bin/upgrading/base-

data.sql:/dw/bin/upgrading/base-data.sql:rw

 -

/home/dw/dw/bin/upgrading/proplists.dat:/dw/bin/upgrading/proplists.da

t:rw

 - /home/dw/dw/cgi-bin/DW/Controller/Index.pm:/dw/ext/dw-

nonfree/cgi-bin/DW/Controller/Dreamwidth/Index.pm

 - /home/dw/dw/views/index-free.tt:/dw/views/index-free.tt

 depends_on:

 mysql:

 condition: service_healthy

 worker:

 container_name: worker

 build:

 context: /home/dw/dw/etc/docker/worker

 dockerfile: Dockerfile

 volumes:

 - /home/dw/dw/etc/docker/web/files/config-

private.pl:/dw/etc/config-private.pl

 - /home/dw/dw/etc/docker/web/files/config-

local.pl:/dw/etc/config-local.pl

 - /home/dw/dw/etc/docker/web/files/config.pl:/dw/etc/config.pl

 - /home/dw/dw/bin/worker-manager:/dw/bin/worker-manager

 -

/home/dw/dw/etc/docker/web/files/workers.conf:/dw/etc/workers.conf

 - /home/dw/dw/cgi-bin/DW/TaskQueue.pm:/dw/cgi-

bin/DW/TaskQueue.pm

 - /home/dw/dw/cgi-bin/DW/TaskQueue/LocalDisk.pm:/dw/cgi-

bin/DW/TaskQueue/LocalDisk.pm

 - /home/dw/dw/var/taskqueue:/dw/var/taskqueue:rw

 command: bash -c "/dw/bin/worker-manager --debug"

 depends_on:

 mysql:

 condition: service_healthy

 lock:

 container_name: lock

 build:

 context: /home/dw/dw/etc/docker/worker

 dockerfile: Dockerfile

 environment:

 - PERL5LIB=/dw/extlib/lib/perl5

 command: bash -c "/dw/bin/ddlockd"

 ports:

 - "7002:7002"

PLEASE believe me when i say this used to look far worse. there used to be an entirely
superfluous migrations container here that did absolutely nothing but make restart times
unnecessarily long and i have removed all reference of it and instead added the lock
container which is critical for basic functions.

the reason why i have all of those files and folders mounted is because i could not for
the life of me get each container to mount the entire cloned root folder it was in. it just
would not cooperate. if you want to edit a file and persist it, you have to mount it
manually into the container. it is a massive pain in the ass and this would look way more
normal if i could do it the normal way. but i digress.

by the way, if you haven't git cloned the dreamwidth repo by now, first, make a
dedicated user on your server for dreamwidth. i called mine dw . this will make life
easier for reasons i forgot. then, clone the repo into /var/www and not the home folder
unless you're a sicko like me. from here, change directories to the etc/docker folder
because that's where we're gonna live.

when editing this compose file to reflect your file structure, you can probably just find
and replace /home/dw/dw/ to either /var/www/root_name if not in home, or if you are,
/home/USER/root_name ; in both of these, change root_name to the name of the root
folder that you cloned (by default it will be dreamwidth), and in the case of the home
directory, change USER to your dedicated user's name.

also, please edit ~/.profile for the new user and add this line in:

 mysql:

 container_name: db

 build:

 context: /home/dw/dw/etc/docker/mysql-build

 dockerfile: Dockerfile

 env_file: .env

 command: --sql_mode=""

 volumes:

 - ./mysql25:/var/lib/mysql

 - /home/dw/dw/etc/docker/cnf/my.cnf:/etc/my.cnf:ro

 ports:

 - "3306:3306"

 healthcheck:

 test: ["CMD-SHELL", "ls"]

 start_period: 10s

 interval: 5s

 timeout: 5s

 retries: 3

be sure to change USER to your user's name. LJ/DW code relies on this variable and it's
included in every dockerfile but it's probably important to have it set bare metal too.

so we're going to be building every docker image here. even mySQL but that one barely
counts because the dockerfile for that one is just pulling from a mySQL image anyway
and adding a bit more to it. so based on that, let's start simple with the database.

dockerfiles

db

if you're thinking "you can't be serious" you are right. all we're doing is copying an entry
point in here and calling an environment variable! that's it! i don't remember why i did
either of those things but follow along.

we have to use mySQL version 5.7 because i tried mySQL version 8.0 and it kept dying
on me and the dreamwidth developers said that the code supports up to 5.7 currently.

anyway the contents of the entry point folder are now completely unnecessary but
please build the image anyway for the sake of that ENV variable. it will probably be
important later.

you may notice the .env file called for this container. this is critical because you need
to set a database password here. PLEASE FOR THE LOVE OF GOD PROTECT THIS
FILE. chmod that shit and never ever push it to git or your site is fucked until you
change things.

here's my redacted version of the file:

export LJHOME=/home/USER/root_name # or /var/www/root_name

FROM mysql:5.7

ENV MYSQL_DATABASE dw

COPY . /docker-entrypoint-initdb.d

MYSQL_DATABASE=USER

MYSQL_USER=USER

MYSQL_PASSWORD=PASS

MYSQL_ROOT_PASSWORD=PASS

af://h2-7
af://h3-8

change USER to your DB username of choice, and PASS to a hardened password that
you will save because it is a pain in the ass to change it. you'll need this password after
we're done with the dockerfiles so put it in a password manager or something.

we're going to keep going in order of simplicity, so we're moving onto the lock
container.

lock

lock uses an existing dockerfile from the dreamwidth github repo, as the rest of these
do, but is modified and custom built for reasons i forgot (you're going to keep hearing
this, it's been a while). it's the worker image, because the base image didn't provide
enough for me to launch the lockfile server from, and web was overkill. so this one it is.

i had my instance running for about 6-7 months with a weird, stubborn little error i
couldn't debug: every time you would edit and save your profile, the page would hang. if
you navigated to another page, and checked back on your profile, you'd notice that
everything but the list of interests saved. this was a non-issue to me until i realized that
this also impacted the registration flow, as you edit and save your profile there as well.
users would get stuck on the page hang, and the confirmation email could never get
sent. i had to manually force password reset emails in their place. it was miserable and
no one liked it.

april 2025 comes. i finally dedicate time to debugging this with a wonderful dreamwidth
volunteer. the root of it? FUCKING LOCK FILES FROM BEFORE I WAS BORN.

ddlockd is a tiny little perl binary that runs a telnet-interactive server and creates
lockfiles so that data doesn't collide into each other and corrupt. it's older than me by a
year or two and was written by Brad himself and some other guy at one of livejournal's

companies. it's the load bearing mac mini[3] of this shit.

so all you need for this image is the contents of the worker image, because that will
provide you with enough perl and DW stuff that you can put command: bash -c
"bin/ddlockd" in the compose file (it's already there! because i did this!) and the
humble little binary will do its lockfile job.

worker

MYSQL_PORT=3306

MYSQL_HOST=db

af://h3-9
af://h3-10

speak of the devil! alright so if you've done website stuff you're probably aware of what
workers and jobs are. they're little tasks that get scheduled and done automatically for
you. these tasks keep your site going. for example, the email worker will... send your
email. every worker labeled ESN will do notifications. and so on. these are important.

i don't need to paste the contents of this, as stated in the previous section, because it's
on github. i didn't need to modify this one. just go there.

web

web is the web server and more. it's the important front-end and where i mounted most
files including configuration and shit. my version of the dockerfile contains so much
commented code i can't share it without looking stupid so i will instead refer you to the
github copy because that one is actually sensible and everything i did in the dockerfile
wound up needing to be done externally.

database

in my notes for this i have the following lines:

docker compose up -d

it crashes
docker compose up -d mysql

this is quite literally what you will be doing. just copy the compose file up there, build the
images with docker compose build , pray to god that there's no errors, and hopefully
you will get to this point. this section is some funky SQL shit. be ready.

first off, we have to make a mySQL configuration file. this will set the bind address to
0.0.0.0 and the protocol as TCP, making it easier to connect to it outside of docker. the
configuration can be anywhere, but has to be mounted to /etc/my.cnf . be sure that
it's read only with the :ro suffix on the mount:

[mysqld]

disable-skip-name-resolve

host_cache_size=0

bind-address=0.0.0.0

[client]

protocol=tcp

https://github.com/dreamwidth/dreamwidth/blob/main/etc/docker/worker/Dockerfile
https://github.com/dreamwidth/dreamwidth/blob/main/etc/docker/worker/Dockerfile
https://github.com/dreamwidth/dreamwidth/blob/main/etc/docker/web/Dockerfile
https://github.com/dreamwidth/dreamwidth/blob/main/etc/docker/web/Dockerfile
af://h3-11
af://h1-12

anyway your database container should be up by now. you have to get into a bash shell
for it, as follows:

docker compose exec -it mysql bash

once you're in there, go find the root DB password you saved earlier when doing the
mySQL env file stuff, and copy it. then, run this command, and when it prompts you for
the password, paste it:

mysql -h localhost -P 3306 --protocol=tcp -u root -p

after that, you SHOULD be into a mySQL shell now! yay! unfortunately we have to do
some password stuff! aw!

this has to be done because mySQL will later change how passwords are done, and we
have to make sure this database retains the old way of doing it, because if things are
ever upgraded, we don't want to get locked out.

i'm going to paste some mySQL commands that you have to run sequentially, and the
only thing you have to change are the password values, which are identified in the
commands by MYSQL_ROOT_PASSWORD_CHANGEME and MYSQL_PASSWORD_CHANGEME and
they are asking to be changed so give them what they want please. if it's not obvious,
these values have to match MYSQL_ROOT_PASSWORD and MYSQL_PASSWORD from the env
file respectively.

all we're doing is the future proofing for the password stuff, and then creating a new user
to interact with the database here.

after this, run a simple flush privileges; to kind of clear the slate.

ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY

'MYSQL_ROOT_PASSWORD_CHANGEME';

ALTER USER 'root'@'%' IDENTIFIED WITH mysql_native_password BY

'MYSQL_ROOT_PASSWORD_CHANGEME';

CREATE USER 'dw'@'localhost' IDENTIFIED WITH mysql_native_password BY

'MYSQL_PASSWORD_CHANGEME';

ALTER USER 'dw'@'%' IDENTIFIED WITH mysql_native_password BY

'MYSQL_PASSWORD_CHANGEME';

NOW we can make databases!

run these each:

dw is your main database, while dw_schwartz is for workers i think. refer to scratch
installation for more details.

for the schwartz DB, you have to populate it with schema data. exit out of your mySQL
shell back into the bash shell and do that as follows:

it will prompt you for the root password, so give it that, and then it will do its thing.

you'd think we should populate the main DB now, but for that, we have to take a brief
detour into config files.

config files

so for this i am going to first link the scratch installation section on it and instruct you to
follow what it says. do all of it. if there's anything that needs to be changed you'll come
back to it.

ok i'm assuming you've done all of that now. moving on here's my changes, step by
step:

config.pl

create database dw;

GRANT ALL PRIVILEGES ON dw.* to 'dw'@'localhost';

GRANT ALL PRIVILEGES ON dw.* to 'dw'@'%';

create database dw_schwartz;

GRANT ALL PRIVILEGES ON dw_schwartz.* to 'dw'@'localhost';

GRANT ALL PRIVILEGES ON dw_schwartz.* to 'dw'@'%';

mysql -h localhost -P 3306 --protocol=tcp -uroot -p dw_schwartz <

$LJHOME/doc/schwartz-schema.sql

http://wiki.dwscoalition.org/wiki/index.php/Dreamwidth_Scratch_Installation#Database_setup
http://wiki.dwscoalition.org/wiki/index.php/Dreamwidth_Scratch_Installation#Database_setup
http://wiki.dwscoalition.org/wiki/index.php/Dreamwidth_Scratch_Installation#Editing_the_config_files
af://h1-13
af://h2-14

$DOMAIN_EMAIL = "gmail.com"; : set this domain to whatever your sender email is. i'm
using a mailjet SMTP relay with a gmail address for this site because i've set up a mail
server once and i am not doing that shit ever again God bless. but if you are rolling your
own email or using something different, put it here.

email addresses [...] : you SHOULD in theory change every email variable here
except the bogus one (that should stay at that null one), but for me i just changed
ADMIN and ABUSE to the first part of my sender gmail address. you don't need to add
the domain in.

#$DEFAULT_CAPTCHA_TYPE = "T"; : un-comment this, we need a captcha for stuff. no
it's not recaptcha or any of that dumb traffic light shit. DW chose the normal sane route
for a fallback and went with textcaptcha, which is super easily configured. we'll get to
that later.

and last, at the bottom of the file, we need a custom line:

BIG thanks to the DW devs for helping me here because this is crazy important and i
had no idea it was. basically, when running a production instance, passwords need to be
secured or hashed or something. the pepper thing, right. this does a weird math thing
with a value you will have to generate and then replace CHANGEME with it. generate that
value with the below command in your shell:

perl -e 'print unpack("H*", join("", map { chr(rand(256)) } 1..32))'

thanks to alierak in the DW discord for supplying this to me! they also advised that the
key be rotated every once in a while for security, so jot that down.

take the value that perl command generates and put it where CHANGEME is in that above
statement

config-local.pl

$IS_DEV_SERVER = 0; : this will be set to 1 by default. we're doing production so set it
at 0.

if ($LJ::IS_DEV_SERVER == 0) {

 %PASSWORD_PEPPER_KEYS = (2 => pack('H*', 'CHANGEME',));

 $PASSWORD_PEPPER_KEY_CURRENT_ID = 2;

}

https://app.mailjet.com/
https://textcaptcha.com/
af://h2-15

all of the above can be changed to what the variables ask for. i kind of just winged it but
these are used in the views.

right under where it asks for cache servers, put this in:

this is how the web and worker containers will be able to connect with the lock
container. INCREDIBLY important!

set these both to your SMTP server addresses — NOT the address domain! it has to be
to the server! mailjet has its own relay server so i used that domain here, not my sender
address' domain of course. and set the variable after to 1 so it's enabled.

config-private

here's the big one. we're configuring the database connection now.

yours is going to look like this; make sure the rest of the %DBINFO stuff is commented
out except this:

$SITENAME = "love4eva";

$SITENAMESHORT = "love4eva";

$SITENAMEABBREV = "l4eva";

$SITECOMPANY = "lol";

@LOCK_SERVERS = ('lock:7002');

$SMTP_SERVER = "in-v3.mailjet.com";

$MAIL_TO_THESCHWARTZ = 1;

%DBINFO = (

 'master' => { # master must be named 'master'

 'host' => 'db',

 'port' => 3306,

 'user' => 'CHANGEMEUSER', # CHANGETHIS if on

Dreamhack to dh_username

 'pass' => 'CHANGEMEPASS', # CHANGETHIS

 'dbname' => 'CHANGEMEDBNAME', # CHANGETHIS if on

Dreamhack to dreamhack_username

 'role' => {

 'cluster1' => 1,

 'slow' => 1,

af://h2-16

change the user, pass, and DB name variables to the corresponding values for your
database. you did this above so just find where you saved them.

scroll down a bit in the file, and you'll find the configuration for the schwartz worker DB:

again, change the user and pass values here to the corresponding values, but not the
same ones as above; these are for your schwartz DB. the DSN value can stay but note
that the host=db part has to match the container name, so that the web container can
connect to it. docker networking is weird.

back to email stuff!

these are only necessary if you're using a relay like me. hostname is the same as the
SMTP server from above, while username and password will be the API key and secret
that your address is provided by your relay. these are also basically the username and
password respectively.

 # optionally, apache write its access logs to a

mysql database

 #logs => 1,

 },

 },

@THESCHWARTZ_DBS = (

{

dsn => 'dbi:mysql:dw_schwartz;host=db', # CHANGETHIS if on

Dreamhack to dreamhack_username instead of dw_schwartz

user => 'CHANGEMEUSER_WORKER', # CHANGETHIS if on

Dreamhack to dh_username

pass => 'CHANGEMEPASS_WORKER', # CHANGETHIS

port => 3306,

},

);

 %EMAIL_VIA_SES = (

 hostname => 'in-v3.mailjet.com',

 username => 'API_KEY_OR_USER',

 password => 'SECRET_OR_PASSWORD',

);

ok, so here's a fork in the road: are you going to use amazon S3 for your images, or use
a local storage implementation for your images that is quite literally called "inefficient" by

the person who wrote it at the top of the file[4]? i can't help you if you choose S3
because i chose blob store.

the local disk module is written to "just work" and it does work, yes, but barely. every
icon and image on site will load horribly slow. it's not efficient at all and i chose it
because i don't know S3 but i'm honestly going to advise that you learn it because it will
make your site usable. but if you for whatever reason want to do it on disk, here's how i
did it.

first, un-comment the local disk part of @BLOBSTORES and be sure to comment the rest
out (except for the closing parenthesis of course). you'll be left with this:

/dw is an absolute path here, but will be mounted in the compose file to wherever you
want. for me i put it in the root of the cloned folder as blobimages , but in the container
it will be the path you set it as in this config file. for the record, everything in the
container will live in /dw .

next you'll want to disable hCaptcha, because screw that shit:

make sure these are both undef to disable it.

now we're at the private part of the config! oh boy i sure hope none of this is important!
(it is)

$DOMAIN is here. put this as your website domain. please note that you CANNOT use a
subdomain for your site. i had to dedicate a whole domain to this site because DW relies
on subdomains for journals. so put your domain as name dot TLD. for example,
love4eva.net.

 @BLOBSTORES = (

 # Local disk configuration, can be used to store everything on

one machine

 localdisk => {

 path => "/dw/var/blobimages",

 },

$CAPTCHA_HCAPTCHA_SITEKEY = undef;

$CAPTCHA_HCAPTCHA_SECRET = undef;

the rest can remain commented, except for %TEXTCAPTCHA at the very end. this is how
we configure the sane captcha. it's very easy thankfully:

yeah so as the comments say, go to the site for this service, sign up with, as the key
variable says, LITERALLY ANY EMAIL OF YOURS, and they will give it a key. you can
then just paste the same email for the API key and it SHOULD be functional. at least it is
for me.

more database stuff but it's not too bad

so let's refer back to the scratch installation page and do what it says, from a shell in the
web container (docker compose exec -it web bash , if you forgot):

run those sequentially. it will do all the stuff for the main DB. the page says this is when
you populate the worker DB but my notes say do that earlier so whatever.

as the page says, we gotta make a system account. it says you can change this later
but i forgot if that's actually true so uh please just make and save a password and then
paste it when the script asks for it:

$LJHOME/bin/upgrading/make_system.pl

lastly we gotta run a tool that'll load translations and words and stuff. this is important
ok. you'll see that this has to be run every time you restart your site later but i'll get to
why when the time comes:

$LJHOME/bin/upgrading/texttool.pl load

%TEXTCAPTCHA = (

this works for testing purposes.

sign up at the textcaptcha website for a key for production use

api_key => "LITERALLY_ANY_EMAIL",

timeout => 10,

);

$LJHOME/bin/upgrading/update-db.pl -r --innodb

$LJHOME/bin/upgrading/update-db.pl -r --innodb # at least for now we

have to run this twice

$LJHOME/bin/upgrading/update-db.pl -r --cluster=all --innodb

$LJHOME/bin/upgrading/update-db.pl -p

http://wiki.dwscoalition.org/wiki/index.php/Dreamwidth_Scratch_Installation#Populate_database_with_initial_data
af://h1-17

FIRST RUN OF THE SITE YEAHHHHHHH

WE'RE FINALLY FUCKING HERE. OK. RUN THIS:

docker compose up -d --force-recreate

and ALL of your containers should start, and your database will be restarted too. this will
take a while. usually for me it takes a minute or two. let it do its thing.

now don't get too excited, we have to get a shell into the web container and do stuff to
get style sheets in order:

docker compose exec -it web bash

gem install compass --version 1.0.3 && gem install sass --version 3.4.25

this does some SCSS installation that's critical for your site.

now, exit out of the shell, and run up -d again, and go to your domain and HOLY SHIT!
THERE'S NOTHING THERE!

never mind we have to reverse proxy now

ok so if you use nginx or traefik or something i can't help you because i am a CADDY
WARRIOR. i'm assuming you know how to use those as reverse proxies if you do use
them but in case you don't, here's some guidance for caddy.

let's get this clear: as i mentioned, the DW code relies on subdomains for every journal.
in theory, on paper, you should have on demand TLS set up for this using cloudflare or
something. in practice.... i just manually load every single subdomain on the same line
and let caddy create a zeroSSL certificate for all of them:

example1.love4eva.net, example2.love4eva.net, example3.love4eva.net {

tls YOUR_EMAIL_HERE {

ca https://acme.zerossl.com/v2/DV90

}

reverse_proxy IP:3237 {

header_up X-Real-Ip {remote_host}

}

af://h1-18
af://h1-19

yes this is fucking insane[1-2]. my reasoning for not doing on demand TLS like a normal
person? well for starters, caddy is kind of annoying about setting this up. you have to
install your domain provider's API module and build the caddy binary with it. also, your
domain provider has to have good API access and allow on demand TLS. guess who
uses a domain provider that doesn't do either of those things: ya girl!

i did look into moving my domain to cloudflare, but at the time of me doing all of this, my
domain was too new to be moved and i had to wait another month. so i told myself this
would be a temporary thing.... and then it wasn't.

honestly like just use zeroSSL and keep your site small if you're doing this. i have at
most 15-20 people on my site and my real config for this looks gnarly. don't be me, who

ignored the suggestions[5], PLEASE use on demand TLS and keep yourself sane if
you're building a big site.

also, real quick, you're going to have to do a redirect for the wildcard to www. this
means no www to www and is as simple as this in caddy:

configuring workers

for your emails to send, and other things, you need to configure the mounted
workers.conf file. note that worker-manager is also mounted; this doesn't need to be
edited but it's necessary that it's mounted for it to be ran in the worker container.

workers.conf is pretty modular and well-described with comments, so if you follow the
comments, you can really customize it, but on its own, you just have to add the workers

log {

output file /var/log/caddy/access.log {

roll_size 1gb

roll_keep 5

roll_keep_for 720h

}

}

}

https://love4eva.net {

redir https://www.love4eva.net

}

af://h1-20

send-email-ses and dw-send-email to the "all" section at the top of the configuration
file.

all that said, here's what my workers.conf file looks like:

if using local disk modules

you may have noticed a few strange files mounted in the compose file, such as
dw/cgi-bin/DW/TaskQueue/LocalDisk.pm and dw/cgi-bin/DW/TaskQueue.pm . if you
did go with local disk storage for your images, these mounts are necessary and
TaskQueue.pm file will require minor edits to make icon and image uploading smooth.

i honestly can't remember WHY i did these, but i tested on my site and removing them
does indeed mess things up for image uploading so just make the edits i don't know.

in TaskQueue.pm , comment the following lines in the sub get block near the top:

i really cannot remember why this needed to be commented but again, shit broke on my
site when i had it not commented. fuck around and find out if you want i guess.

all:

 esn-fired-event: 1

 esn-process-sub: 1

 send-email: 1

 esn-cluster-subs: 1

 lazy-cleanup: 1

 import-scheduler: 1

 content-importer: 1

 send-email-ses: 1

 dw-send-email: 1

 $_queue = DW::TaskQueue::LocalDisk->init();

 # Determine what kind of queue object to build, depending on if

we're

 # running locally or not

 if (exists $LJ::SQS{region}) {

 return $_queue = DW::TaskQueue::SQS->init(%LJ::SQS);

 }

af://h1-21

then, in the following line that checks if the server is in development mode or not,
change if ($LJ::IS_DEV_SERVER) to force it to work in production:

this one i have mostly forgotten, but i can assume that, since local disk was meant to
work only for development, this and the prior tweak force it to work in production.

customization of the site

the header makes this sound like it's optional but it's really not so i'm gonna bold text the
following:

do NOT use the following dreamwidth themes on your site, and especially don't
customize them! these are NOT free for usage and dreamwidth doesn't intend for
them to be used by independent sites!

the non-free code, as it's often referred to on the dreamwidth wiki and even still within
the code, used to be in its own github repository, but apparently the two were merged at
some point. regardless, there ARE themes in the code that you can use! just not the
ones above. the list of ones you can use and customize are below:

these are both separated in the code anyway — you'll only find the CSS and SCSS for
the non-free Tropospherical themes in the $LJHOME/ext/dw-nonfree/htdocs directory
— but i wanted to make this clear.

as i've alluded to, the themes aren't built with raw CSS, of course. SCSS is compiled, in
theory, with every restart of the web container. in practice, this does not happen and i
have a workaround, but that will come later.

if ($LJ::IS_DEV_SERVER == 0) {

return $_queue = DW::TaskQueue::LocalDisk->init();

}

Tropospherical Red
Tropospherical Purple

Celerity
Gradation Horizontal
Gradation Vertical
Lynx (this one is text only)

af://h1-22

now: customizing these themes is a major pain if you do not know SCSS! it's very
confusing and i had to hop between the CSS and SCSS files to make things align. the
split is also present because of the BML conversion that's in progress for dreamwidth;
the BML pages cannot use the SCSS i don't even think it existed yet so it's plain CSS
for them. that's why some dreamwidth pages look slightly different and more or less
modern than others.

personally, i chose to customize Gradation Horizontal for my site, flipping it to a light
theme and making it pink because i love pink. for your site, you can pick from these
existing themes and customize them to your heart's content, as i did of course, but if you
want something REAL messy to start you off with, i've shared my custom versions of
Gradation Horizontal in a sourcehut repo. this repo is linked in the resources section for
quick reference.

default site scheme

to set the default site theme, or the site scheme, as it's called, we have to do something
kinda hacky. you might have noticed these weird mounts in the compose file:

notice how the same file is mounted twice, but the second time, it's mounted over a
different file? that's the hacky thing.

what happened here was that cgi-bin/DW/SiteScheme.pm had been edited to reflect
the default scheme. however, as it stands, non-free code is what controls the default
AND logged out site scheme. thus, if a logged out user views the site without this
mount, they would see non-free dreamwidth branding! and we can't do that!

so i tried this hack during initial deploy and it somehow worked. do not ask me how but it
did. anyway here's what the edited part of my version of that file looks like, to make
Gradation Horizontal the only available theme:

- /home/dw/dw/cgi-bin/DW/SiteScheme.pm:/dw/cgi-bin/DW/SiteScheme.pm:rw

- /home/dw/dw/cgi-bin/DW/SiteScheme.pm:/dw/ext/dw-nonfree/cgi-

bin/DW/Hooks/SiteScheme.pm:rw

package DW::SiteScheme;

use strict;

my %sitescheme_data = (

 # blueshift => { parent => 'common', title =>

"Blueshift" },

celerity => { parent => 'common', title =>

https://git.sr.ht/~chasinglightning/love4eva-ref
af://h2-23

notice the comments. you can make blueshift and celerity options if you want of course,
i just decided not to. but this file already didn't include the Tropo themes — the non-free
DW themes — and i guess my weird hail mary mount made things work for me so
whatever i hope it does for you too.

custom index controller

in the middle of writing this guide i went to clear up some things with DW devs about the
non-free code i mentioned above, and i realized i had some sitting in my compose file! it
was a file called index.tt.text.local , and after a quick look at it on my server and
then on the DW github repo, i realized it was there to edit some dreamwidth hardcoding.
turns out, that hardcoding was being rendered by MORE non-free code!

so i talked it out and we realized that the non-free code would take precedence over the
free versions because the non-free part has its own index page controller. that controller
makes it assume priority. momijizukamori, the wonderful DW volunteer who's helped me
lots with this whole project, wrote a basic controller that loads the free version of that
index page, but static.

since it was static, it would show the same page to both logged in and logged out users.
so if you wanted logged in users to see their inbox and notifications, they wouldn't get
that, and logged out users would be presented with a basic set of links meant for logged
in users. so i got my hands dirty!

i wrote perl code for the first time for the sake of these docs. it was terrifying. perl is an
ungodly language. i respect it though for its power. honestly half of the code is
redundant and most of it is copied and learned from other dreamwidth modules. but i
tried my best, and it does the job! this controller code and the new index page are both
in the sourcehut repo, but here's the controller anyway, because it's so short:

$LJHOME/cgi-bin/DW/Controller/Index.pm :

"Celerity" },

 common => { parent => 'global', internal => 1 },

 'gradation-horizontal' => { parent => 'common', title =>

"Gradation Horizontal" },

 'gradation-vertical' => { parent => 'common', title =>

"Gradation Vertical" },

 lynx => { parent => 'common', title => "Lynx

(light mode)" },

 global => { engine => 'current' },

 tt_runner => { engine => 'bml', internal => 1 },

);

https://git.sr.ht/~chasinglightning/love4eva-ref
af://h2-24

#!/usr/bin/perl

#

DW::Controller::Index

#

Controller for the site homepage.

package DW::Controller::Index;

use strict;

use warnings;

use DW::Routing;

use DW::Template;

use DW::Controller;

use DW::Panel;

use DW::Widget::QuickUpdate;

DW::Routing->register_string('/index', \&indexfree_handler,

app => 1);

sub indexfree_handler {

 my ($ok, $rv) = controller(anonymous => 1);

 return $rv unless $ok;

my $remote = $rv->{remote};

my $stuff;

my $widget;

if ($remote) {

 $stuff->{remote} = $remote;

$stuff->{panel} = DW::Panel->init(u => $remote);

 $widget->{primary} = DW::Widget::QuickUpdate->render_body;

$stuff->{helpme} = DW::Panel->_render($widget);

}

else {

$stuff->{panel} = DW::Panel->init(u => $remote);

}

return DW::Template->render_template('index-free.tt', $stuff);

}

#DW::Routing->register_static('/index', 'index-free.tt',

app => 1);

1;

custom text

somehow i figured out how to add custom social media properties for users to put in
their profiles, so here's a quick note on the several files you'll need to edit to get those.

the files are as follows in the compose file:

let's say we're going to add a custom field for bluesky (i did this already). starting with
en.dat , you have to add a line as follows:

profile.service.bluesky=Bluesky

and put it where the other lines that start with profile.service are. i have mine in
somewhat alphabetical order.

base-data.sql looks pretty gnarly, but it's not too bad. you just have to sift through the
lines and choose whether you want to add a free text field or a link field. in the bluesky
case i opted for free text, as bluesky usernames are dynamic and can feature domain
names so a direct link can't necessarily work as easily. so i'll show examples for both
bluesky (free text) and dreamwidth (link):

notice how url_format is NULL up above, and the presence of maxlen , which defines
the max characters. we'll get to the images in the next one.

for dreamwidth, which has a link format, it goes a tiny bit differently:

- /home/dw/dw/bin/upgrading/en.dat:/dw/bin/upgrading/en.dat:rw

- /home/dw/dw/bin/upgrading/base-data.sql:/dw/bin/upgrading/base-

data.sql:rw

-

/home/dw/dw/bin/upgrading/proplists.dat:/dw/bin/upgrading/proplists.da

t:rw

- /home/dw/dw/htdocs/img/profile_icons:/dw/htdocs/img/profile_icons

INSERT IGNORE INTO profile_services (name, userprop, imgfile,

title_ml, url_format, maxlen) VALUES ('bluesky', 'bluesky',

'bluesky.png', 'profile.service.bluesky', NULL, 40);

UPDATE profile_services SET userprop='bluesky', imgfile='bluesky.png',

title_ml='profile.service.bluesky', url_format=NULL, maxlen=40 WHERE

name='bluesky';

af://h2-25

this time url_format is defined! i simply mimicked some existing entries for other sites
and realized that %s can stand for the subdomain that dreamwidth requires, and the
protocol is not required.

up next is proplists.dat . this one looks more complex but all you have to do is follow
a template like this:

that's about it. oh and for the little images that go next to these entries on the profile,
they're mounted in this compose file on the host at
$LJHOME/htdocs/img/profile_icons . the images must be 16x16 pixels. i usually just
take the favicon of the site and shrink it further if needed.

running your site

WE'RE FINALLY HERE! YOU CAN RUN YOUR SITE!

so every time you restart the containers, your style sheet will reset to the defaults before
your edits. i don't know why it does this but it's annoying. also, if you made any additions
to the profile social media lists, those disappear. i've made a script that i execute after
the containers are started up, directed into a bash shell. this script will also handily
generate site statistics for you, so it's kind of hitting two birds with one stone:

INSERT IGNORE INTO profile_services (name, userprop, imgfile,

title_ml, url_format, maxlen) VALUES ('dreamwidth', 'dreamwidth',

'dreamwidth.png', 'profile.service.dreamwidth', '//%s.dreamwidth.org',

30);

UPDATE profile_services SET userprop='dreamwidth',

imgfile='dreamwidth.png', title_ml='profile.service.dreamwidth',

url_format='//%s.dreamwidth.org', maxlen=30 WHERE name='dreamwidth';

userproplist.bluesky:

cldversion: 4

datatype: char

des: Bluesky handle

indexed: 0

multihomed: 0

prettyname: Bluesky

#!/bin/bash

updates phrases (has to run twice) then builds stylesheets

af://h1-26

i have the script saved in $LJHOME/etc/docker as up.sh , so name it something like
that, give it execute permissions, and run it as follows:

admin stuff on site

before we wrap up, i'm going to cover something called privileges. there's a whole wiki
page dedicated to this, but in short: the system account from earlier? that's critical for
doing a lot of things, and it needs and can grant privileges (think of them as
permissions) to users. log in as the system user, go to the admin console
(/admin/console), and run the following one after another:

i don't remember why some of these are important but just go with it ok. if you find that
your system account is missing some privileges, or you want to give your main user
account some for ease of use (i've done this for making mood themes hahah), just refer
to the wiki to see what you can grant.

CONCLUSION

$LJHOME/bin/upgrading/texttool.pl load &&

$LJHOME/bin/upgrading/texttool.pl load && $LJHOME/bin/build-static.sh

updates stats

(http://wiki.dwscoalition.org/wiki/index.php/Statistics_setup)

$LJHOME/bin/ljmaint.pl genstats # Generate nightly stats

$LJHOME/bin/ljmaint.pl genstats_size # Generate site size stats

$LJHOME/bin/ljmaint.pl genstats_weekly # Generate weekly stats

$LJHOME/bin/ljmaint.pl genstatspics # Generate stat graphs

docker compose exec -T web bash < up.sh

priv grant payments system

priv grant finduser system

priv grant suspend system

priv grant reset_email system

priv grant reset_password system

http://wiki.dwscoalition.org/wiki/index.php/Privileges
http://wiki.dwscoalition.org/wiki/index.php/Privileges
af://h1-27
af://h1-28

oh god this is long and i am tired. i'm not saying anything for myself i will simply thank
EVERY SINGLE DREAMWIDTH DEVELOPER FOR HELPING ME AND BEING KIND.
ALSO ALL OF MY FRIENDS FOR BEING SUPPORTIVE IN THIS NONSENSE. i love
you all i hope someone gets something out of this stupid guide.

references

1.
↩ ↩ ↩

2. from perl dot com itself ↩

3. do not unplug the load bearing mac mini! ↩

4. "grossly inefficient that just (kinda sorta) works" ↩

5.
↩

af://h1-29
https://www.perl.com/article/83/2014/4/7/Perl-hate/
https://sreally.com/twitter-tales-load-bearing-mac-mini/
https://github.com/dreamwidth/dreamwidth/blob/1bda24dee20275b34ebafa9140f43e2b5b08d6bc/cgi-bin/DW/BlobStore/LocalDisk.pm#L6

	2025-04-16 self hosting dreamwidth with docker
	objectively insane title i know
	baseline stuff
	important resources

	table of contents
	getting started
	the compose file
	dockerfiles
	db
	lock
	worker
	web

	database
	config files
	config.pl
	config-local.pl
	config-private

	more database stuff but it's not too bad
	FIRST RUN OF THE SITE YEAHHHHHHH
	never mind we have to reverse proxy now
	configuring workers
	if using local disk modules
	customization of the site
	default site scheme
	custom index controller
	custom text

	running your site
	admin stuff on site
	CONCLUSION
	references

